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ABSTRACT

A new Modified Levenberg—Marquardt Algorithm (M-LMA), which has been a
corrected version of traditional Levenberg—Marquardt Algorithm (LMA) was
proposed to compared with the simulated results of LMA for minimizing back
propagation errors using back propagation neural network (BPNN) in order
to simulate a nonlinear dynamic system with same learning rates of 0.15.

Resulted shown for this simulated nonlinear dynamic system, M-LMA was
better than LMA.
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INTRODUCTION

The comments of Artificial Neural Network (ANN) related to Biological Neuron Network
were given in a study (Lin, 2017). Updating the weight and bias using back-propagation is
called back-propagation neural network (BPNN) (McCulloch and Pitts, 1943; Rochester, et
al., 1956; Fukushima, 1980; Pickies, 1994; Bird, 2003; Mohri, et al., 2012). The classical
Levenberg—Marquardt Algorithm (LMA) (Marquardt, 1963) is known as the damped least-
squares (DLS) (Levenberg, 1944; Ortega and Rheinboldt, 2000), which is only a function of
an independent variable. This learning rate is calculated arbitrarily in the classical LMA,
causing it to converge prematurely when used for solving real world engineering problems. It
has been used to decide desired minimum error (Hagan et al, 1997; Ngia and Sjoberg, 2000;
Ham and Kostanic, 2001; Manolis and Lourakis 2005; Haykin, 2008; Finsterle and
Kowalsky, 2010; Ipsen et al, 2011; Alippi, 2014; Pourbagher and Derakhshandeh; 2016).
Therefore, the computed processing of The classical LMA to update weight and bias is not a
parallel distribute processing (PDP) as a human neuron (Ferrier, 1876; Levenberg, 1944; Lin,
2017). Naveen et al (2010) used a type of classical LMA for Inverse Problems, which was a
changed made from the classical LMA to enhance its performance by adaptive learning rate,
wherein the learning rate was varied depending on the convergence of the objective function.
Chen (2016) also used another type of classical LMA with line search for nonlinear
equations. He corrected the computed style of classical LMA that is at every iteration, not
only a LMA step, but also two additional approximating LMA steps in order to save the
Jacobian calculation and employ line search for the step size, are computed. The results were
very efficient and could save many calculations of the Jacobian. They have modified classical
LMA. However their performances were not the PDP.

Copyright © 2017 Leena and Luna International, Chikusei, Japan. ISSN: 2186-8476, ISSN: 2186-8468 Print
1|Page #) VFTURLFAvE—FYaFiL, HERAR www.ajsc. leena-luna.co.jp



http://www.ajssh.leena-luna.co.jp/

Asian Journal of Natural & Applied Sciences Vol. 6(3) September 2017

In this paper, BPNN is used to simulate a nonlinear dynamic system as shown in Figure.1
with a new modified Levenberg—Marquardt Algorithm (M-LMA) to update weight to perform
a PDP.

LEVENBERG-MARQUARDT ALGORITHM (LMA)

A nonlinear real-valued function of f be composed of x . The parameter Y, is defined as a
target output (Rumelhart and McClelland, 1986) corresponding to the parameters x, and y, .
That is, ¥, = f(X,) . After approaching a nonlinear real-valued function, such as when
applied to some simulated problems, the function f will generate the co-domain Y, i.e.,
Yk =f (xk ), k =1,2..... The codomain is defined as the initial codomain when k is 1.
Therefore, limits of & —> 0 can be considered. Let x° best satisfies the real-valued

functional relation f that must be determined to minimize & & with the error

&= Yk - Y, , where 7' denotes the transposition of a vector. For small H5X , Where ||||

denotes the Euclidean norm, a Taylor-series expansion leads to the approximation
S (x+dx) =~ f(x)+Jox; (1)
9 (x)
ox

produces a series of ( X, ), (X, ), (X5)..., which finally converge toward a local minimizer

where J is the Jacobian matrix, ; using this nonlinear iterative method then

Y? = f(x?); that is, optimized output corresponding to the optimized x° and. Therefore
¥, — f(x+ &%) =Y, — f(x)—J&| =& — J&x|is estimated. The element of Ox is used for

a nonlinear least squares problem whose minimum is attained when & — J. OX is orthogonal
to the column space of J and J' (8 —J @C) = C%C(MI ) , where [ is the identity matrix.
Then, S(ul)+J " Jox=J"¢ 2)

Thus formula (2) becomes

{,+H, ) x)=J"&, (3)

where H, =J "J is the approximated Hessian matrix (Ngia and Sjoberg, 2000; Pradeep
etal, 2011; Fu et al, 2015) and Iﬂ =ul | u is considered to be the learning rate.

MODIFIED LEVENBERG-MARQUARDT ALGORITHM (M-LMA)

Now let a nonlinear real-valued function of f be composed of x and y, which belong to
independent variables. The parameter Y, is defined as a target output corresponding to the
parameters x, and y,. That is, ¥, = I (x,,yt). After approaching a true curve, such as
when applied to some simulated problems, the function f will generate the co-domain Y}

ie., Yk =f (xk,yk), k =1,2..... The codomain is defined as the initial codomain
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when k is 1. If & — 0,8y — 0, then it is implied that &Sy — 0. On the contrary, if
&xdy — 0, it is uncertain if & — 0,8y — 0. Therefore, limits of & — 0,85 — 0 can be

considered. Let x” and y“ best satisfy the real-valued curve functional relation f that must

: . T :
be determined to minimize £ & with the error & =Y, —Y, | where 7 denotes the

transposition of a vector. For small H5x,@ , Where |||| denotes the Euclidean norm, a

Taylor-series expansion leads to the approximation

S (x+dx,y+oy) = f(x,y)+ Sy, 4)

I (x,y)
ox oy

produces a series of ( X;, V,), (X,,¥,), (X5, )5)..., which finally converge toward a local

where J is the Jacobian matrix, ; using this nonlinear iterative method then

minimizer ¥° = f(x°, ) ; that is, optimized output corresponding to the optimized x°
and y° . Therefore Y, — f(x+ 8, y+ )| =Y — f(x, ) — TS| =& — TS| s
estimated. The elements of &x and OV are used for a nonlinear least squares problem whose

minimum is attained when & —JOXOY is orthogonal to the column space of J and

J’ (e=Jxoy)=xoy(ul) , where I is the identity  matrix.  Then,
&y +J " Joxdy=J"¢ (5)
Thus formula (4) becomes

L, +H ) xH)=T &, (6)

T r . . ) . ) .
where 1, = J" J is the approximated Hessian matrix and /,, = u/ , U is considered to
a pp u

be the learning rate when simultaneously adjusting or updating the X, )’ values. Formulas
(4), (5), and (6) belong to M-LMA. In this work, the parameters x and y are considered as

the weight and bias of the BPNN (McCulloch and Pitts, 1943; Rochester, et al., 1956;
Fukushima, 1980). Therefore, the updated processing of weight and bias in BPNN becomes a
PDP, simulated more like the processing of a biological neuron using M-LMA.

TESTS AND RESULTS

A nonlinear dynamic system of )’ as an input ¢ in Figure.l has been simulated by BPNN
using LMA and M-LMA to minimize back propagation Errors with the learning rates from 0
to 2 simultaneously. The frame of BPNN included 2 hidden layers and there were 10 neurons
in each layer. Figure.2 has shown the results of LMA and M-LMA with same learning rate of
0.15. The learning rate of 0.15 was best using LMA and M-LMA in the range of 0 to 2. The
simulated results of M-LMA were better because of the smaller simulated errors.
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Figure.1 This figure shows the flowchart of a nonlinear dynamic system of )’ simulated by
BPNN with the output V .
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Fig.2 This figure shows the results of LMA and M-LMA with same learning rate of 0.15
simultaneously. The simulated errors of M-LMA are smaller. The blue line indicates the true
outputs. The green line indicates the simulated outputs. The blue line indicates the simulated
errors.

CONCLUSION

The LMA and M-LMA have been simultaneously performed to minimize back propagation
errors for a simulating a nonlinear dynamic system by BPNN with same learning rate of 0.15.
The M-LMA has shown the smaller simulated errors.
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