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ABSTRACT 

In this paper, a mathematical model with isolation of infected individuals for the 

transmission of Lassa fever is developed and analyzed. We obtained the basic 

reproduction number oR which is the average number of new secondary infection 

generated by a single infected individual/rat during infectious period. The analysis 

shows that the disease free equilibrium is locally and globally asymptotically stable 

whenever the threshold quantity oR  is less than unity i.e. 1Ro  . The endemic 

equilibrium of the model exists under certain condition. The numerical 

analysis carried out using MAPLE 17 software. The result shows that the 

isolation of infected individuals reduces the dynamical spread of Lassa as there will 

be less interaction with the infected individual in the society, the result also shows 

that treatment of infected-isolated individuals gives a better result which means that 
government should intensify effort in isolation and the treatment of isolated-infected 

individuals in order to control the spread of the disease. 
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INTRODUCTION                                                                                                                                                  

Lassa fever is a viral disease that is majorly caused by Lassa virus. It was first discovered in 

1961 in the Lassa town of Borno State, Nigeria [3]. Endemic situation of Lassa virus was 

reported in some cities of West Africa of countries of Sierra Leone, Liberia, Guinea and 

Nigeria [11, 12]. In Cote d’Ivoire, Ghana, Togo and Benin the outbreak of Lassa fever has 

never been reported, though the isolation strategy revealed the evidence of viral circulation 

[7]. 

The carrier of Lassa Virus is a small rodent (rat), the Multimammate rat of the genus 

Mastomys. The transmission occurs when an individual come in contact directly with the 

blood, urine, feaces of rats and other body secretions of an infected person [1, 7, 14]. Since 

the rodents lives in an environment very close to human, it aids transmission from the rodent 

to human of the virus through direct contact. Furthermore, contact with the virus may also 

occur when an individual absorbs particles in the air containing Lassa virus from an infected 

person [2]. The symptoms of Lassa fever begin to show in an individual after being infected 

between one and three weeks. Those symptoms include facial, muscle fatigue, vomiting, 

cough, meningitis and hypertension. The presence of Lassa virus may result into neurological 

problems including loss of hearing which may be transient or permanent, tremors and 
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encephalitis [13, 15]. The disease is mild or has no observable symptoms in up to 80% of 

people infected, but 20% develop a severe multisystem diseases. Even after recovery, the 

virus remains in body fluids for long periods of time [7, 8].  

For SIR model (Susceptible, Infected, Recovered) and SEIR model (Susceptible, Exposed, 

Infected, Recovered), individuals that are treated or given vaccine and recovered cannot 

return to susceptible because of the permanent immunity they have in their system. Many 

researchers have worked on mathematical modeling of Lassa fever outbreak in the presence 

some factors that may enhance its outbreak. Bawa et. al [1] worked on Stability analysis of 

the disease free equilibrium state for Lassa fever disease, they developed a deterministic 

model for Lassa fever in a population with vital dynamics. Their analysis revealed that the 

disease can be control if the basic reproduction number R0 is less than one regardless of the 

initial population profile. James et. al [9] developed a mathematical model of Lassa fever 

disease dynamics using a set of ordinary differential equations. They discovered that the zero 

equilibrium state is stable when the birth rate of the human population is less than the death 

rate and same when the birth rate of the mastomysnatalensis (reservoir) is less than the total 

death rates.  

In this paper, we presented a new six compartmental model with isolation of infected 

individual for the dynamical spread of Lassa to check the treatments of infected-isolated 

individuals and infected without isolation individuals. 

 

MODEL FORMULATION 

The population size  tN h  of human is sub–divided into sub–classes of individuals who are 

Susceptible  tSh , Exposed hE (t), Infected  tI h , and Isolation  tJ h , So that; 

          )1(tJtItEtStN hhhhh 

 

Also, the population size  tN R  of the rodents is sub–divided into susceptible rodents  tS R  

and Infectious rodents  tI R . So that;  

      )2(tItStN RRR 

The susceptible population is increased by the recruitment of individuals into the population 

(either by birth or immigration at the rate h ). The population decreases by the newly borne 

infected individuals that move to infected class. The population also decreases by infection 

following a contact with infectious rodents and human (at the rate 21 and  ) and natural 

death (at the rate h ). Thus; 
    hhhh2R1hh SSII1S                                    

(3) 

The population of the exposed class consists of newly infected individuals following a 

contact with the infected rodents and human (at the rate 21 and  ). The class increases due 

to the treatment of the infected and isolated individuals (at the rate 21 UandU ). The exposed 

population declines due to progression to infectious class (at the rate h ) and natural death (at 

the rate h ).Thus; 
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    )4(2121 hhhhhhhRh JUIUESIIE  

 

The population of infected individual increases by newly borne infected individual (at the 

rate  ) and progression from exposed class (at the rate h ).  The population declines due to 

treatment (at the rate 1U ), those that are isolated (at the rate ), natural death (at the rate h  ) 

and disease induced death ( at the rate h ).  Thus; 

  )5(1 hhhhhhh IUEI  

  

The population of the isolated individual increases by those that are infected but isolated (at 

rate ). The population decreases due to natural death (at the rate h ), death due to the 

disease (at the rate h ) and the treatment (at the rate 2U ).  Then, 

  )6(2 hhhhh JUIJ  

     

Susceptible rodents ( RS ) are generated at a constants rate R (recruitment rate) and acquire 

infection following effective contact with infected rodent (at a rate 1 ). The rodents suffer 

death (at the rate R ) Hence, 

)7(1 RRRRRR SSIS  

                              

The infected class of the rodents has newly infected rodents and reduces by the death (at the 

rate R ).  Hence; 

 RRRR1R ISII                                                                       (8) 

In summary, combining the above formulations and assumptions together, we have the 

following system of differential equations. The definitions of variables and parameters used 

are given in tables 1 and 2. 

 

ANALYSIS OF THE MODEL 

Lemma 1: The closed set 6

Rh RDDD   is positive invariant for the model equation (9) 

with non-negative initial condition in 
6R  

   

   

 
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Proof:  Consider the biologically-feasible 6

Rh RDDD   with 

}
)1(

N::R)J,I,E,S{(D
h

h

h

4

hhhhh



  and }N::R)I,S{(D

R

R
R

2

RRR



   

We shall show that D is positive invariance (i.e all solution in D remain in D for all time t>0). 

The rate of change of the total population of human and rodents by adding gives; 

hhh IN
dt

dN
   and RR N

dt

dN
   

Where hhhhh JIESN   and RRR ISN   

A standard comparison theorem [10] can be used to show that 

)e1(
)1(

e)0(N)t(N t

h
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hh
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

   . 

In particular 
h

h

h

)1(
)t(N




 and 

R

R
R )t(N




 , if 
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)1(
)0(N
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
 and 

R

R
R )0(N




  

respectively. Therefore, all solution of the model with initial condition in D remains there for 

t>0. This implies that D is positively-invariant, in this region the model can be considered as 

been epidemiologically and mathematically well posed. 

 

Disease Free Equilibrium point 

At steady state, ,0ISJIES Rhhhhh   

Let oE denotes the disease free equilibrium state of the model equation (9). 

Then, at disease free ,0 Rhhh IJIE  
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                             (10)      

 

Basic Reproduction Number 

The basic reproduction number is the number of secondary cases of infection emanating from 

a single infection source [5]. Next Generation matrix method [6] is used to obtain the basic 

reproduction number. The matrices F (new infection terms) and V (other remaining transfer 

terms) are given as; 
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Where; Rhhhhh KUKUKK   4,23121 ,,  
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Then, the basic reproduction number denoted by oR  is given by  1 FVRo   

 
 
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The threshold quantity oR  is the basic reproduction number of the model equation above, 

which is the average number of new case of an infection caused by one typical infected rat/ 

human in a population consisting of susceptible only.  

 

Local Stability of Disease Free Equilibrium Point  

Theorem 1: The disease free equilibrium of the modeled equation (9) is locally 

asymptotically stable (LAS) if 0R < 1 and unstable if 0R > 1. 

Proof: To determine the local stability of 0E , the following Jacobian matrix is computed 

corresponding to equilibrium point 0E . Considering the stability of the disease free 

equilibrium at the critical point (
h
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The eigen values are  = h , R , 5c  and the remaining matrix is given by; 

0
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                                  (11)                        

 
The characteristics polynomial of (11) is given by 

0AAAA 01

2

2

3

3                                                                        (12) 

Where  

3A = 1 

1342 cccA   

43241311 cccccccA h                                                                       (13) 

hhhh UccccURA  )](1[ 14431200    

Then the Routh Hurwitz criterion will be employed to determine the nature of other roots, 

which states that all the roots of the polynomial will have negative real parts if and only if all 

the coefficients iA (i=0, 1, 2, 3 ) are all positive and that the matrices iT (i=1, 2, 3 ) are all 
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positive. Clearly, from (13) above   00,0,0 0123  AandAAA  if 10 R . Also, the 

Hurwitz matrix iT  are all positive which are given below; 

 0
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32

3
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32

221   

Therefore, all the eigen-values of the polynomial (12) are negative which shows that the 

disease free equilibrium is locally asymptotically stable. 

 

Global stability of the Disease Free Equilibrium 

Theorem 2: The disease free equilibrium of model given by (9) is globally asymptotically 

stable if Ro<1. 

Proof: 

 We will use comparison theorem [10] to prove the global stability. The rate of change of 

variables representing the infected components of equation (9) can be re-written as; 
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Where; 
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All the eigen values of the matrix F – V have negative real parts. It follows that the linearized 

differential inequality system above is stable whenever 1oR .Consequently, by comparison 

theorem [10] we have that  0,0,0,0,0,0  Rhhh IJIE  as t . Substituting 

0 Rhhh IJIE  into (1) we have that )0()(),0()( RRhh StSandStS   as t .  

Hence, we have a positive invariant region. it follows that disease free equilibrium is globally 

asymptotically stable whenever  10 R .  

Existence of the Endemic Equilibrium 

 

Theorem 3: The model (9) has a unique endemic equilibrium when the basic reproduction 

number exceeds unity (i.e. 1Ro  ) 
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Proof: Let the endemic equilibrium
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and 
**

hI is given by the solution of the quadratic equation; 

0CBIAI **

h

2**

h   

Where; 

      1hhhh2hhh1h1212h2R UUUUUUUA   
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      
          hh212hhh2hh1hhhR0
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R1R1hhhh2hh
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UUUUU1R
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





       hh2hhhR

2

R1RhhR2

2

R1Rhh UU1C   

The coefficient of 
2**

hI  is positive (i.e. A >0) if;

     1hhhh2hhh1h1212h UUUUUUU     

And the constant C is positive. Moreover, B is negative whenever 1R o  , if also; 

     1211212 UUUUUUU hhhhhhhhh   , Then, there 

exists positive roots. Therefore, there exists an endemic equilibrium whenever 1R o   

NUMERICAL SIMULATION 

Numerical simulation of the model was carried out by the help of MAPLE 17 software using 

differential transformation method. The parameters values are as given in the table 2. 
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                               Fig.1          Fig.2 

DISCUSSION OF RESULTS AND CONCLUSION 

A six (6) new compartmental model was formulated to gain insight into the effect of isolation 

of infected individuals and treatment of infected individuals in the dynamical spread of Lassa 

fever due to effective contact of human and infected rats. The positivity of solution shows 

that the model is mathematically and epidemiologically well posed. Basic reproduction 

number ‘ R0 ’ which determines whether Lassa disease dies out or spread was calculated 

using next generation matrix method, the result shows that, disease dies out whenever the 

threshold R0  1 but spreads when it exceeds unity i.e. R0 1 . The global stability of disease 

free equilibrium was analyzed using comparism method [10].  

Numerical simulation of the model was carried out by MAPLE (17) software . Figures 1 and 

2 of the numerical simulation showed that, isolation of infected individuals would reduce the 

dynamical spread of Lassa fever in the society. Moreover, this would help the public not to 

have interaction with infected individuals and would enable infected-isolated individuals to 

receive proper and adequate treatment.  
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Figures 3 and 4 showed the pronounced effect of treatment on infected and infected-isolated 

individuals. Results showed that treatment of infected-isolated individuals yield a better result 

compared to infected individuals. When the treatment rate of infected individuals is 0.3, we 

have about 580 infected whereas the infected-isolated individuals have reduced to 550.  

In conclusion, isolation of infected individuals should be targeted as one of the control 

measures by government and policy health makers in the dynamical control of Lassa fever in 

the society.         

Table 1.  Table of variables and Description 

 

 

 

 

    

 

 

 

 

 

Table 2. Table of parameters and their values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Description 

)(tSh  Susceptible Individuals 

)(tEh  Exposed  Individuals 

)(tI h  Infected  Individuals 

)(tJ h  Isolated  Individuals 

)(tS R  Susceptible Rodents (Rats) 

)(tI R  Infected Rodents 

Parameter Description Values References 

  Rate of infection at birth 0.2 Estimated 

h  Recruitment rate of human 2000 Estimated 

1  Contact rate of rat 0.2 Estimated 

2  Contact rate of human 0.2 Estimated 

h  Natural death rate of  human 0.02 CIA(2015) 

h  Death due to disease of human 0.1 Estimated 

h  Progression rate 0.003 Estimated 

  Isolation rate 0.2 Estimated 

1U  Infected treatment rate 0.1 Estimated 

2U  Isolated treatment rate 0.2 Estimated 

R  Recruitment rate of rat 500 Estimated 

R  Natural death rate of rat 0.02 Estimated 
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