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ABSTRACT 

In this paper, we give some specializations and evaluations of the Tutte polynomial of 

a family of positive-signed connected planar graphs. 

First of all, we give the general form of the Tutte polynomial         of the family of 

graphs   using directly the deletion-contraction definition of the Tutte polynomial. 

Then, we give general formulas of Jones polynomials       of very interesting 

families of alternating knots and links   that correspond to these planar graphs; we 

actually specialize the Tutte polynomial to the Jones polynomial with the change of 

variables,      and         and with some factor of  . In case of two-

component links, we get two different formulas of the Jones polynomial, one when 

both the links are oriented either in clockwise or counterclockwise direction and 

another one when one component is oriented clockwise and the second 

counterclockwise. 

Moreover, we give general forms of the flow, reliability, and chromatic polynomials 

of these graphs. The reason to study flow polynomial is that it gives the number of 

proper flows in the connected graph,  . In our case, we give the number of nowhere 

zero flows in   over a finite abelian group   using the Tutte polynomial. The 

reliability polynomial gives the probability of a path of active edges between each 

pair of vertices. The chromatic polynomial, which is a popular graph invariant, 

actually could count the number of ways of proper coloring of the graph. For better 

understanding of the situation, we also give graphs for all these polynomials for 

different values of the parameters. 

Finally, we give some useful combinatorial information about these connected 

graphs, particularly about the subgraphs and the orientations of these graphs. 

Regarding subgraphs, we give the number of subgraphs, number of connected 

spanning subgraphs, number of forests, and number of trees of these graphs. 

Regarding orientations, we give the number of acyclic orientations, number of acyclic 

orientations with exactly one predefined source, number of totally cyclic orientations, 

and the number of score vectors of orientations of the graph. 

Keywords: Tutte polynomial, Jones polynomial, Flow polynomial, Reliability 

polynomial, Chromatic polynomial 

INTRODUCTION 

The Tutte polynomial was introduced by W.  T.  Tutte in 1954 in [19] as a generalization of 

chromatic polynomials studied by Birkhoff [1] and Whitney [23]. This  graph  invariant 

became popular  because of its universal  property that any multiplicative graph invariant 

with a deletion/contraction reduction must be  an  evaluation of it,  and  because  of its  

applications in  computer science, engineering,  optimization, physics, biology, and knot 
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theory. 

In 1985, V. F. R. Jones revolutionized knot theory by defining the Jones polynomial as a knot 

invariant via Von Neumann algebras [11]. However, in 

1987 L. H. Kauffman introduced in [13] a state-sum model construction of the Jones 

polynomial that was purely combinatorial and remarkably simple; we actually follow this 

construction. 

Our primary motivation to study the Tutte polynomial came from the remarkable connection 

between the Tutte and the Jones polynomials that up to a sign and multiplication by a power 

of t the Jones polynomial       of an alternating link   is equal to the Tutte  polynomial  

            [17, 15, 8, 9]. 

This paper is organized as follows: In Section 2 we will give some basic notions about graphs 

and knots along with definitions of the Tutte and the Jones polynomials. Moreover, in this 

section we will give the relation between graphs and knots, and the relation between the Tutte 

and the Jones polynomials. In Section 3 the general formula of the Tutte polynomial of a 

family of graphs will be given. Moreover, in this section we will specialize the Tutte 

polynomial to the Jones, flow, reliability, and chromatic polynomials. Finally, the 

interpretations of some evaluations of the Tutte polynomial will be given at the end of the 

same section. 

PRELIMINARY NOTIONS 

Basic Concepts of Graphs 

A graph   is an ordered pair of disjoint sets       such that   is a subset of the set of 

unordered pairs of . The set    is the set of vertices and   is the set of edges. If   is a graph, 

then        is the vertex set of , and        is the edge set. An edge       is said to 

join the vertices   and , and is denoted by  ; the vertices   and   are the end vertices of this 

edge. 

If          then   and   are adjacent or neighboring vertices of  , and the vertices   and    

are incident  with the edge   . Two edges are adjacent if they have exactly one common end 

vertex. 

We say that            is a subgraph of         if      and     . In this case we 

write    . If    contains all edges of   that join two vertices in    then    is said to be the 

subgraph induced or spanned by   , and is denoted by  [  ]  Thus, a subgraph    of   is an 

induced subgraph if   
 
   [      ]. If        then     is said to be a spanning subgraph 

of  . 

Two graphs are isomorphic if there is a correspondence between their vertex sets that 

preserves adjacency.  Thus,         is isomorphic to           , denoted       if 

there is a bijection        such that      if and only if         . 

The dual notion of a cycle is that of cut or cocycle. If         is a partition of the vertex set, 

and the set  , consisting of those edges with one end in     and  one end in   , is not  empty,  

then     is called a cut.  A cycle with one edge is called a loop and a cocycle with one edge is 

called a bridge. We refer to an edge that is neither a loop nor a bridge as ordinary. 

A graph is connected if there is a path from one vertex to any other vertex of the graph.  A 

connected subgraph of a graph   is called the component of  . We denote by      the 

number of connected components of a graph  , and by      the number  of nontrivial 

connected components,  not counting isolated vertices.  
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A tree is a connected graph without cycles. A forest is a graph whose connected components 

are all trees. (Spanning trees in connected graphs play a fundamental role in the theory of the 

Tutte polynomial.)  Observe  that a loop  in  a  connected graph  can  be  characterized as  an  

edge  that is in  no spanning  tree, while a bridge is an edge that is in every spanning  tree. 

A graph is planar if it can be drawn in the plane without edges crossings. A drawing of a 

graph in the plane separates the plane into regions called faces. Every  plane graph   has a 

dual graph,    , formed by assigning a vertex of    to each face of   and  joining two  

vertices  of   by   edges if and  only if the corresponding  faces of   share   edges in their 

boundaries.    is always connected. If   is connected, then        . If    is planar, it may 

have many dual graphs. 

A graph invariant is a function    on the collection of all graphs such that             

whenever      . A graph polynomial is a graph invariant where the image lies in some 

polynomial ring. 

The Tutte Polynomial  

The following two operations are essential two understand the Tutte polynomial definition for 

a graph  . These are the edge deletion, which is denoted by    , and the edge contraction, 

which is denoted by    . 

 

     

 

Definition 2.1 [ 8 , 9 , 19, 20, and 21] The Tutte polynomial of a graph   is a two-variable 

polynomial         defined as follows: 

        {

                       
                     

                                                
 

If   is empty, then         is 1. 

Example.  Here is the Tutte polynomial of the graph                  .              

              

                                                                                                 

 

                                                            

Remark 2.2.  The  definition  of the Tutte polynomial  outlines a  simple  recursive  procedure  

to compute it,  but the order  of the rules  applied  is not fixed. 

Basic Concepts of Knots 

A knot is a circle embedded in three-dimensional space, and a link is an embedding of a union 

of such circles. Since knots are special cases of links, we shall often use the term link for both 

knots and links.  Links are usually studied via projecting them on a plan; a projection with 

extra information of overcrossing and undercrossing is called the link diagram. 
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Two links are called isotopic if one of them can be transformed to the other by a 

diffeomorphism of the ambient space onto itself. A fundamental result  about  the isotopic 

link diagrams  is: Two unoriented links    and    are  equivalent  if and  only if a diagram 

of    can be transformed into a diagram of    by a finite sequence of ambient isotopies of the 

plane and local (Reidemeister) moves of the following three types: 

   

 

 

 

 

 

The set of all links that are equivalent to a link   is called a class of  . By a link   we shall 

always mean a class of the link  . 

The Jones Polynomial 

The main question of knot theory is which two links are equivalent and which are not? To 

address this question one needs a knot invariant, a function that gives one value  on all links 

that belong to a single class and  gives different values  (but not  always)  on links  that 

belong  to different  classes. In 1985, V. F. R. Jones revolutionized knot theory by defining 

the Jones polynomial as a knot invariant via Von Neumann algebras [11]. However, in 1987 

L. H. Kauffman introduced in [13, 14] a state-sum model construction of the Jones 

polynomial that was purely combinatorial and remarkably simple. 

Definition 2.3.   [11, 12, 13] The Jones polynomial        of an oriented link   is a Laurent 

polynomial in the variable √  satisfying the skein relation 

      
        

    ( 
 
    

 
 )   

    

and that the value of the unknot is  . Here               are three oriented links having 

diagrams that are isotopic everywhere except at one crossing where they differ as in the 

figure below: 

                  

 

                                                                                                                                                        

Example.   The Jones polynomials of the Hopf link and the trefoil knot are respectively 

      

                                   and                              . 

 

             

              
Trefoil knot Hopf link 
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A Connection between Knots and Graphs 

Corresponding to every connected link diagram we can find a connected signed planar graph 

and vice versa.  The process is as follows: Suppose   is a knot and    its projection.  The 

projection     divides the plane into several regions. Starting with the outermost region, we 

can color the regions either white or black. By our convention, we color the outermost region 

white. Now, we color the regions so that on either side of an edge the colors never agree. 

 

Next, choose a vertex in each black region. If two black regions R and R' have common 

crossing points             then we connect the selected vertices of R and R' by simple edges 

that pass through            and lie in these two black regions. In this way, we obtain from 

K' a plane graph   [  ]. 

However, in order for the plane graph to embody some of the characteristics of the knot, we 

need to use the regular diagram rather than the projection. So, we need to consider the under- 

and over-crossings .To this end, we assign to each edge of G either the sign + or − as you can 

see in the following figure. 

 

 

 

 

A signed plane graph that has been formed by means of the above process is said to be the 

graph of the knot   [  ].  

Conversely, corresponding to a connected signed planar graph, we can find a connected 

planar link diagram. The construction is clear from the following figure. 

 

 

 

 

 

 

The fundamental combinatorial result connecting knots and graphs is: 

Theorem 2.4. [15] The collection of connected planar link diagrams is in one-to-one 

correspondence with the collection of connected signed planar graphs. 

Connection between the Tutte and the Jones polynomials 
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The primary motivation to study the Tutte polynomial came from the following remarkable 

connection between the Tutte and the Jones polynomials. 

Theorem 2.5.   (Thistlethwaite’s) [17, 15, 9] Up to a sign and multiplication by a power of t 

the Jones polynomial         of an alternating link   is equal to the Tutte polynomial 

              

For positive-signed connected graphs, we have the precise connection: 

Theorem 2.6.   [2] Let   be the positive-signed connected planar graph of an alternating 

oriented  link diagram   Then  the Jones polynomial of the link   is 

                
                

               

where        is the number  of vertices  in  ,      the number  of vertices  in the dual of  , 

and       the writhe of  . 

Remark 2.7.  In this paper, we shall compute Jones polynomials of links that correspond only 

to positive-signed graphs. 

Example. Corresponding to the positive-signed graph  :           , we receive the right-handed 

trefoil knot  :          . It is easy to check, by definitions, that                          and 

that                      . Further note that the number of vertices in   is  , number of 

vertices in the dual                  of   is  , and with of   is  . Now notice that   

            
        

                            

which agrees with the known values.    

MAIN RESULTS 

In  this  section  we first  give the general  form  of the Tutte polynomial  of a family  of 

positive-signed  connected graphs,  and  then specialize it  to the Jones, reliability,  flow, and  

chromatic  polynomials.  Also, we evaluate the Tutte polynomial at some points to get 

combinatorial information about these graphs. 

The Tutte Polynomial 

 Here we give the general formula of the Tutte polynomial of the following 

graph. For reference purposes, we denote this graph by           which has 

two cycles    and     having a common vertex and having   loops. (A loop 

can be attached to any vertex of the graph.)                                                                                           

  Theorem 3.1   [8] If   and                    

     ∐                                        

where   ∐   is the disjoint union of    and     and      is formed by identifying a vertex 

of   and a vertex of    into a single vertex. 

Lemma 3.2.   The Tutte polynomial of the cycle    of   vertices is  

                                     
      ∑        

   .     (3.1) 

Proof.   We prove it by induction on  . The Tutte polynomial of the cycle    is                
      . To convince ourselves we also give Tutte polynomials of    and    which are: 

 
                               and                                                                                           
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         . 

Suppose the result in (3.1) holds for      , that is     
      ∑        

   . 

Now taking a cycle    with  -vertices, we have                      . Since 

     is a tree with     edges, we have              . Now using the inductive step, 

we get            ∑        
    , which (on collecting the first two terms) finally 

reduces to the desired results.   

Proposition 3.3.   The Tutte polynomial of the graph           is 

         
               ∑         

   

   

 

 Proof.  The result follows directly from Theorem 3.1 and Lemma 3.2; each loop as a graph 

contributes a factor of y.   

If all the   loops are detached from            we receive the graph on the right, 

 and denote it by        . 

Corollary 3.4.   The Tutte Polynomial of the graph            is  

         
               ∑          

    

The Jones Polynomial 

The alternating links   that correspond to the graph        fall into two categories, the 1-

component links (when   is odd) and 2-component links (where   is even). 

 The graphs along with the corresponding 1-component links (or simply knots) are 

given in the following table. 

                          

 

 

 

 

 

 

 

 

Remark 3.5.  Please observe from the above  table  that          and          . 

Proposition 3.6.   The Jones polynomial of the alternating link   that corresponds to the 

planar graph       , when   is odd, is 

      (
       

   
) ( 

    
   

   
   

   
   

   
 )  

Proof. We prove it by specializing the Tutte polynomial of the graph        using Theorem 

2.6. Using Remark 3.5, we find that the factor           
                

  reduces to  
   

 . 
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Now 

                           
   
        

          

                                
   
           [∑         

   

   

] 

                                
   
           [

    

   
 

 

 
] 

                                 
   
  

       

 
 [
           

      
] 

                                (
       

   
) ( 

    
   

   
   

   
   

   
 )  

as desired.   

Now, the 2-component links along with the graph       , for even  , can be seen in the 

following table. 

 

If both the components of the link are oriented either clockwise or counterclockwise 

direction, then we receive the result: 

Proposition 3.7.   The Jones polynomial of the alternating link   that corresponds to the 

planar graph       , when   is even, is 

      (
       

   
) ( 

    
   

   
   

   
   

   
 )  

Proof. Similar to the proof of Proposition 3.6; the only difference is that the factor 

          
                

  now reduces to   
   

 .   

 

If one of the components is oriented clockwise and the other counterclockwise, the we get: 

Proposition 3.8.   Let   be the link that corresponds to the planar graph        such that one 
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of the components is oriented clockwise and the other counterclockwise, then 

      (
       

   
) ( 

  
   

     
   

     
   

     
 )  

Proof. Similar to the proof of Proposition 3.6; in this case           and thee factor 

          
                

   reduces to   
     

 .   

The Flow Polynomial 

The flow polynomial was investigated by W.  T.  Tutte in 1947 in [18] as a function which 

could count the number of flows in a connected graph. 

Definition 3.9.   Let   be a graph with an arbitrary but fixed orientation, and let   be 

an additive abelian group of order | |. A  -flow is a mapping   of the oriented edges 

 ⃗ (G) into the elements of the group   such that: 

∑             ∑                     (3.2) 

for every vertex v, and where the first sum is taken over all arcs towards v and the second 

sum is overall arcs leaving v. 

A  -flow is nowhere zero if   never takes the value 0. The equation (3.2) is called the 

conservation law (that is, the Kirchhoff’s law is satisfied at each vertex of  ). 

It is well known [2, 3, 6] that the number of proper  -flow does not depend on the structure 

of the group, but rather only at its order, and this number is a polynomial function of | | that 

we refer to as the flow polynomial. 

The following, due to Tutte [19], relates the Tutte polynomial of   with the number of 

nowhere zero flows of G over a finite Abelian group (which, in our case, is    ). 

Theorem 3.10.   [19] Let   be a graph and   a finite abelian group. If    | |   denotes the 

number of nowhere zero  -flows then 

   | |      | | | |           | |   

Proposition 3.11.   The flow polynomial of the graph  

         is  

        
 | |   | |       . 

Proof. We prove it by specializing the Tutte 

polynomial to the flow polynomial by the relation of 

Theorem 3.10. 

Since in the graph         ,       , | |       , and | |     , the factor 

    | | | |      reduces to        . Also, the factor       | |  reduces to    | |    . 

Thus, the flow polynomial of          finally becomes  | |    k+2, as required.   

The Reliability Polynomial  

Definition 3.12.  Let   be a connected graph or network with | | vertices and | | edges, and 

suppose that each edge is independently chosen to be active with probability   .  Then the (all 

terminal) reliability polynomial is 

 RG ( ) = ∑  | |      |   | = ∑   
| | | |  
      | |       | |   | |  , 
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where A is the connected spanning subgraph of G and  is the number of spanning connected 

subgraphs with    | |    edges. 

       Thus, the reliability polynomial, RG( ), is the probability that there is a path of active 

edges between each pair of vertices of  . 

Theorem 3.13. [8] If G is a connected graph with | | edges and | | vertices, then 

RG( ) = | |       | | | |  TG(1,
 

   
). 

Proposition 3.14. The reliability polynomial of G3,.,n,k  is RG( ) =   n+1 
(3-2  ) [n-(n-1)  ]. 

Proof. We prove it by specializing the Tutte polynomial          
 into the reliability polynomial 

by using Theorem 3.13.  

Since in our case | |      and | |       , the 

factor   | |       | | | |  
 reduces to             

. 

Now, the relation 

  RG( ) =              TG(1,
 

   
) 

          =             [(     
 

   
) (∑      

    

 

   
) (

 

   
)
 

] 

           =             [(  
 

   
) (    

 

   
) (

 

   
)
 

] 

          =             [(
    

   
) (

        

   
) (

 

   
)
 

] 

finally reduces to the desired result.     

Remark 3.15.  Since the reliability polynomial is loop independent, the reliability 

polynomial of       is the same as the reliability polynomial of        . 

The Chromatic Polynomial 

The chromatic polynomial, because of its theoretical and applied importance, has generated a 

large body of work. Chia [5] provides an extensive bibliography on the chromatic 

polynomial, and Dong Koh, and Teo [7] give a comprehensive treatment. 

 For positive integer  , a   -coloring of a graph   is a mapping of      into the set 

               of   colors. Thus, there are exactly    colorings for a graph on   vertices. If   

is a  -coloring such that             for all     , then   is called a proper (or 

admissible) coloring. 

Definition 3.16. The chromatic polynomial        of a graph   is a one-variable graph 

invariant and is defined recursively by the following deletion-contraction relation: 

                        –         

 In order to find the number of proper   -colorings of the graph        , we find the 

chromatic polynomial of this graph as a special case of the Tutte polynomial         
       The 

following is the precise relation between these polynomials. 

Theorem 3.17. [2] The chromatic polynomial of a graph    is 

       
        | |                   , 
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 where      denote the number of connected components of  . 

Proposition 3.18. The chromatic polynomial of the graph        is         
            

        [        ]. 

Proof. We prove it by specializing the Tutte polynomial to the chromatic polynomial with the 

relation  

       
        | |                 

       , which is given in Theorem 3.17.  

Since for the graph        | |       and         , the factor     | |            reduces 

to          . 

Now, we have  

       
             [             ] [∑       

 

   

] 

                          [              ] [∑         
   ] 

                   [∑        

 

   

] 

                 [        
        

       
 ] 

                   [        ]  

which is the required result.   

Remark 3.19. Observe that the chromatic polynomial of the graph          becomes    the 

reason is the common factor     

Subgraphs 

The following theorem gives information about the number of different types of subgraphs of 

a connected graph  . 

Theorem 3.20.  [8] If   is a connected graph then: 

1           is the number of spanning trees. 

2.             is the number  of spanning  forests. 

3             is the number of spanning connected subgraphs.  

4.             equals  
| |

, and is the number  of subgraphs.  

Proposition 3.21.  The following statements hold for the graph          . 

1.  The number of spanning trees is   . 

2.  The number of spanning forests is     
      . 

3.  The number of spanning connected subgraphs is  
        . 

4.  The number of subgraphs is   
     

. 
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Proof. We prove it using directly Proposition 3.3 and Theorem 3.20, and using the  
 
sums ∑          

    and ∑               
   .  

Substituting       in Proposition 3.3, we have                ∑       
   

                  , which is the required result. The proofs of Items 2 and 3 are 

similar. The proof of Item 4 is straightforward, since | |       .     
        

Orientations and Score Vectors 

The combinatorial interpretations of the Tutte polynomial in Theorem 3.20 are given in terms 

of the number of certain subgraphs of the graph  . However, they can also be given in terms 

of orientation of the graph and its score vectors. An orientation of a graph   is the graph    all 

of whose edges are directed. 

The score vector of an orientation    is the vector ( 1    …,  ) such that vertex   has 

outdegree    in the orientation. In the following theorem we gather several similar results 

about the Tutte polynomial and orientations of a graph.  

Theorem 3.22. [8] if   is a connected graph, then  

1.   (2,0) equals the number of acyclic orientations of  , that is 

orientations without oriented cycles [4]. 

2.     (1,0) equals the number of acyclic orientations with exactly one 

predefined source    [22]. 

3.     (0,2) equals the number of totally cyclic orientations of  , that is 

orientations in which every arc is a directed cyclic [22]. 

4.     (2,1) equals the number of score vectors of orientations of   [4]. 

Proposition 3.23. The following statements hold for the graph         . 

1. The number of acyclic orientations is  . 

2.  The number of acyclic orientations with exactly one predefined score 

  is    

3.  The number of totally cyclic orientations is     .  

4. The number of score vectors of orientations is 7(    +1). 

Proof. The proofs of Items 1 and 2 are straightforward because when we 

substitute     in           
     = (      )(∑        

   )  , it becomes   due to 

the factor   . For Item 3, we have T(0,2) = (      )(∑          
   )(  ) = 

2(0+2)(  ) = (    ). Similarly, Item 4 can be proved.   

Proposition 3.24. The following statements hold for the graph         

1. The number of acyclic orientations is    
   

2. The number of totally acyclic orientations is  . 

3. The number of acyclic orientations with exactly one predefined source 

  is      . 

4. The number of score vectors of orientations is 7( 
     ). 
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Proof. It is similar to the proof of Proposition 3.23.   

ACKNOWLEDGEMENT 

We are thankful to Higher Education Commission of Pakistan on partially supporting this 

work. 

REFERENCES 
 

1. Birkhoff, G. D. (1912). A determinant formula for the number of ways of 

coloring a map. Annals of Mathematics, 14, 42-46. 

2. Bollob´as, B. (1998). Modern Graph Theory. Graduate Texts in Mathematics, 

Springer, New York.  

3. Bondy, J. A. & Murty, U. S. R. (2008). Graph Theory. Springer. 

4. Brylawski, T. & Oxley, J. (1992). The Tutte Polynomial and Its Applications. In: 

White, N. (ed) Matroid applications, Encyclopedia of Mathematics and Its Applica- 

tions. Cambridge University Press, Cambridge  

5. Chia,   G.  L. (1997).  A  Bibliography on Chromatic Polynomials. Discrete Math. 172, 

175-191. 

6. Diestel, R. (1997). Graph Theory. Springer.   

7. Dong, F. M., Koh, K. & Teo, M. K. L. (2005). Chromatic Polynomials and 

Chromaticity of Graphs. World Scientific, New Jersey. 

8. Ellis-Monaghan, J. A. & Marino, C. (2008). Graph Polynomials and Their 

Applications I: The Tutte Polynomial, arXiv: 0803.3079v1 [math]. 

9. Jablan, S., Radovic, L. & Sazdanovic, R. (2010).Tutte   and Jones polynomials of link 

families. ArXiv: 1004.4302v1 [math.GT]. 

10. Jaeger, F. (1988). Tutte polynomials and link polynomials. Proc.  AMS 103, 647-654. 

11. Jones, V. F. R. (1985). A Polynomial Invariant for Knots via Von Neumann Algebras, 

Bulletin of the American Mathematical Society 12, 103-111. 

12. Jones, V. F. R. (2005). The Jones Polynomial, Discrete Math., 294, 275-277.  

13. Kauffman, L. H. (1987). State models and the Jones Polynomial. Topology 26, 395-

407. 

14. Kauffman, L. H. (1988).  New invariants in knot theory. Amer. Math. Monthly 95, 195-

242. 

15. Kauffman, L. L. H. (1989).  A Tutte polynomial for signed graphs. Discrete Appl. 

Math. 25, 105-127. 

16. Murasugi, K. (1996). Knot Theory and Its Applications. Birkhauser, Boston. 

17. Thistlethwaite, M. (1987). A spanning tree expansion for the Jones polynomial.  

Topology 26, 297-309. 

18. Tutte, W. T.  (1947). A ring in graph theory. Proc.  Comb.  Phil.  So., 43, 26-40.  

19. Tutte, W. T. (1954). A contribution to the theory of chromatic polynomials. Canad. J. 

Math. 6, 80-91. 



ISSN: 2186-8476,  ISSN:  2186-8468 Print 

Vol. 2  No. 2,   June 2013  
 

                                  ASIAN JOURNAL OF NATURAL & APPLIED SCIENCES 

 

www.ajsc.leena-luna.co.jp  
 102  | P a g e      

Leena and Luna International, Oyama, Japan. 

Copyright © 2013 

 

20. Tutte, W. T. (1967). On dichromatic polynomials.  J. Combin.  Theory, 2, 301-320. 

21. Tutte, W. T. (2004). Graph polynomials. Special issue on the Tutte polynomial, Adv. in 

Appl. Math., 32, 5-9. 

22. Vergnas, M. L. (1977). Acyclic and totally cyclic orientations of combinatorial 

geometries. Discrete Mathematics, 20, 51-61. 

23. Whitney, H. (1932). A Logical Expansion in Mathematics. Bull. Amer. Math. 

Soc., 38, 572-579. 

 

 


