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ABSTRACT 

Many-core processors will provide system developers on embedded platforms with the 
best means of achieving system flexibility, shorter time to market, longer device life 

cycles and overcome the hardware productivity gaps of familiar hardwired and semi- 

hardwired implementations. However, the lack of portable tools for application 
development may hamper the rate of their adoption by industry. This work aims to 

contribute towards the solution by providing an abstraction from the many design 

constraints facing application developers. Models have been designed to improve our 

ability to iteratively map data flow applications to the target machine. Furthermore, an 
energy model has been introduced, making it possible to optimize energy usage within a 

target budget, while still meeting the set performance constraints. 
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INTRODUCTION 

As it stands today, a progression towards the many – core processing technology is now accepted 

as a means of overcoming the scalability issues facing multi – core technology. However, its use 

is still restricted to the signal processing domain, where there is a natural match. In the future, it 

is expected to be the dominant programmable architecture for high performance computing. For 

this to happen, an aggressive effort at providing tools for application and compiler development 

has to be undertaken. Multi-core technologies, even with their inherent scaling bottlenecks, are 

still the mainstream programmable processing technology because the paradigm is well 

understood and compiler technology is most developed. However, in a few years’ time we are 

expected to reach the limit in the expected performance of multi-cores. Looking at the 

international technology roadmap, 2007 [1], it is clear that this may already be happening in 

some domains. 
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This work argues for improved tools on many-core architectures through the continuous 

advancement in languages and compilers. Even in the signal processing domain, a lot of effort is 

still needed. One such effort targets the efficient allocation of parallel hardware resources 

through the provision of improved heuristics.  

For real time systems, there is also the need to provide the compiler with performance feedbacks 

that will make it easier to develop applications that meet specified timing constraints, thereby 

improving developer productivity and reducing time to market constraints. 

Real time systems provide us with a unique opportunity, because the correctness of the task 

depends on both the functional and non-functional properties of the application. Existing 

compilers are not adequate because they mostly target only the functional properties. When a 

feedback is obtained early in the development circle, adjustments can be made without wasting 

time needlessly.   

We are not only interested in performance properties but argue that energy, another non – 

functional property, should also be targeted by the compiler. The reason for this is not farfetched. 

Energy has always been a mainstream issue when discussing embedded systems. However, the 

overbearing nature of the discussion now means that domains well outside the embedded 

systems industry now regard energy efficiency as a main stream issue. Almost all the recent 

hardware developments incorporate extensive energy saving features that can only be maximally 

utilized when targeted by the compiler. 

This work provides a tool which is unique in the sense that it targets performance and energy, but 

is also a product of countless effort by researchers over the years that has resulted in better 

models of computation, languages and compiling technology for dataflow applications on multi 

– processing and chip multi – processing platforms. One such tool [2] has been enhanced by our 

work to take dynamic speed and power scaling into account since this is a feature that is common 

to recent hardware developments. We focus on using synchronous data flow (SDF) [3] models to 

describe the application, given the fact that SDFs are very suitable for modeling signal flows, 

especially since the schedule is determined in advance of the run time environment. We aim to 

model the dynamic nature of the processing that is involved, providing a means of studying the 

run time behavior of the application. 

In this paper, we discuss the set of models that make up the tool; the graph based intermediate 

representation (IR) which maps the modeled application to the target machine, the enhancements 

made to target processors with speed and voltage scaling capabilities and the nature of the 

abstract interpretation that is used to provide a feedback to the application developer (could also 

provide a feedback to an auto tuner). We also present the power model which gives the abstract 

interpreter the ability to provide energy estimates based a particular mapping on a per core basis. 

It is important to note that the tool does not aim at providing a circle accurate simulation of the 

processing; rather its function is to guide the programmer on how to optimize the mapping in 

order to minimize resource use and still meet up with the end to end latency requirement of that 

application.  

RELATED WORK 

Sheduling techniques for dataflow graphs on parallel processing platforms has been extensively 

researched in the last 30 years. Effort has either concentrated on mapping task graphs to 

recourses or maximizing throughput by iteratively adjusting the schedule or both.  



ISSN: 2186-8476,  ISSN:  2186-8468 Print 

Vol. 1.  No. 2.  June 2012  
 
                                             ASIAN JOURNAL OF NATURAL & APPLIED SCIENCES 

 

 www.ajsc.leena-luna.co.jp 
 129  | P a g e      

Leena and Luna International, Oyama, Japan. 

Copyright © 2012 

 

Bokhari [4] developed an algorithm for mapping dataflow task graphs onto a linear array of 

processors while Sih and Lee [8] proposed an algorithm which is a single step heuristic that takes 

inter – processor communication overhead into account during clustering. This algorithm aimed 

at producing a feedback for iteratively tuning the schedule.  

On the other hand, Banerjee et al. [5] developed a throughput maximizing scheme using a two-

step method in which the first step used an iterative scheduling algorithm to determine the 

tradeoffs between clustering and parallelism. In the next step, the granularity was determined 

through an iterative refinement technique.  

Others have approached the problem by attempting to find a schedule that satisfies a timing or 

throughput constraint. Examples can be seen in the work of Choudhry et al. [6] and Aiken and 

Nicolau [7]. Both have decomposed the graph into serial and parallel sections and found optimal 

assignment of processors to these sections so that the response time is minimal for a given 

throughput constraint. 

Similar to this work, Bengtsson and Svensson [8] have used a two-step strategy which is 

independent of each other. The first step consists of clustering and the second step consists of 

scheduling the clusters on the processor. However, while they clearly target performance as a 

means of tuning the schedule, we have increased the scope to include both performance and 

energy as the basis for iteratively improving the schedule. 

IMPLEMENTATION 

In this section we present the model set which consists of an application model which describes 

the processing requirements of the application, an energy model which computes the energy 

consumed in carrying out the task based on the particular many-core machine and a machine 

model that describes the memory and computational resources of the many-core processor. 

However, we first give brief notes on the target processor and application for a deeper 

understanding of the assumptions that have been made in order to make this work manageable 

and realizable. 

THE TARGET PROCESSOR 

The target processor will be an array – structured multiple instruction, multiple data (MIMD) 

type machine with homogeneous tightly coupled cores. We assume that it is implemented on a 

Complementary Metal Oxide Semiconductor (CMOS) circuit. We also assume that this 

processor is capable of performing dynamic speed and voltage scaling (DVS) on a per – core 

basis. This means that the cores will be modeled with a local clock that is timed with reference to 

the global system clock. Also, we only consider a distributed memory architecture where all the 

cores are in control of their own local memory space. This allows them to take advantage of the 

locality of data that is typical with the data flow domain. 

The network of cores is implemented on a mesh structure which provides a decentralized but 

transparent communication scheme. This makes it easier to predict communication timing and 

notice its effects on end to end latency constraints.  
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APPLICATION MODEL 

The synchronous data flow (SDF) model of computation is used to model the application. It is 

made up of a network of actors which are blocks of computation, and communication channels 

which are the only means of communicating between actors. Actors fire as soon as there is 

enough data or tokens consumed from the communication channel, therefore, the whole process 

is data synchronized. For a more detailed description of SDFs and their firing properties, see [3]. 

Just as in [2], each actor is represented by a tuple < rp, rm ,Rs ,Rr  > 

Where  

 rp is the worst case execution time for the block of code in the actor. 

 rm is the requirement on local memory in words. 

 Rs = [Rs1, Rs2, Rs3,……., Rsn] 

It is a sequence where Rsi is the number of words produced on channel i each firing. 

 Rr  = [Rr1, Rr2, Rr3,……., Rrn] 

It is a sequence where Rrn is the number of words received from channel j each firing. 

Because we are not interested in making a cycle accurate simulation of the processing, we make 

use of worst case estimates on time and memory requirements.  

MACHINE MODEL 

The machine model is made up of a set of parameters that describe the common resources of the 

machine. It is at the core of the tools portability. All a user needs do is set the parameters 

according to the machine that is being modeled. These parameters are used to define abstract 

performance and energy functions that are used to compute the cost of various configurations of 

the application. The machine model as described in [2] is given by; 

M = < (x, y), p, bg, gw, gr, o, so, sl, c, hl, rl, ro > 

Where 

 x, y are the number of rows and columns of cores. They describe the exact location of the 

core in the processor array. 

 p is the processing power (instruction throughput) of each core, in operations per clock 

cycle. 

 bg is global memory bandwidth, in words per clock cycle. 

 gw is the penalty for global memory write, in words per clock cycle. 

 gr is the penalty for global memory read, in words per clock cycle. 

 is the software overhead for initiation of a network transfer, in clock cycles. 

 so is core send occupancy, in clock cycles, when sending a message. 

 sl is the latency for a sent message to reach the network, in clock cycles. 

 c is the bandwidth of each interconnection link, in words per clock cycle. 

 hl is network hop latency, in clock cycles. 

 rl is the latency from network to receiving core, in clock cycles. 

 ro is core receive occupancy, in clock cycles, when receiving a message. 
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In order to model the concept of local timing for the cores, we have included more parameters;  

 sf stands for scaling factor, and is used to determine the speed of the core with reference 

to the global operating frequency of the machine. Sfi ɛ SF where I corresponds to the 

number of the core as can be determined by the cores x, y coordinates. 

 f denotes the maximum operating frequency at which a core can operate. 

 wl is the average wire length between cores. 

 ILeakage is the leakage current per core. 

PERFORMANCE FUNCTIONS 

F is a set of abstract functions describing the performance of computations, global memory 

transactions and local communication: 

F(M) = < tp, ts, tr, tc, tgw, tgr > 

Where 

 tp is a function evaluating the time to compute a list of instructions. 

 ts is a function evaluating the core occupancy when sending a data stream. 

 tr is a function evaluating the core occupancy when receiving a data stream. 

 tc is a function evaluating network propagation delay for a data stream. 

 tgw is a function evaluating the time for writing a stream to global memory. 

 tgr is a function evaluating the time for reading a stream from global memory. 

The value for each of the performance functions can be derived from the machine parameters as 

follows: 

Compute: The time required to process the computation of a list of instructions is given as: 

tp (rp, p) =  [rp/p] 

which is a function of the requested number of operations rp and core processing power p. To 

calculate rp, we count all instructions except those related to network send- and receive 

operations. 

Send: The time required for a core to issue a network send operation is expressed as 

ts (Rs, o, so) =  [Ps/framesize]  × o + Ps × so  

Send is a function of the requested amount of words to be sent, Rs, the software overhead o when 

initiating a network transfer, and send occupancy so. The framesize is a machine specific 

parameter however; we use a setting of 8. 

Receive: The time required for a core to issue a network receive operation is expressed as: 

tr(Rr, o, ro) = [Rr/framesize] × o + Rr × ro 

The receive overhead is calculated in a similar way as the send overhead, except that parameters 

of the receiving core replace the parameters of the sending core. 

Network Propagation Time: This is expressed as 

tc (Rs, d, sl, hl, rl) =  sl + d(xs,ys,xd,yd)  + hl + nturns + rl 
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Where sl and rl represent the injection and extraction latency respectively, while d(xs,ys,xd,yd)  

and hl represent the number of network hops and network hop latency respectively. d(xs,ys,xd,yd) 

is determined from the source and destination coordinates as │xs – xd │+ │ys – yd │. Routing 

turns add an extra cycle which is captured as nturns and is calculated using the source and 

destination coordinates.  

Streamed Global Memory Read: This the propagation time when streaming data from the 

global memory to a receiving core. It is expressed as  

tgr = rl + d(xs,ys,xd,yd)  x hl + nturns  

Streamed Global Memory Write: This the propagation time when streaming data to the global 

memory from a sending core. It is expressed as 

tgw = rl + d(xs,ys,xd,yd)  x hl + nturns   

ENERGY MODEL 

Power is the rate at which a system performs its work and energy is the work performed over a 

period of time. In a processor, power is the rate of consumption of electrical energy and energy is 

the sum total of all the electrical energy consumed over the entire period. 

P = W/T 

E = P * T 

E, P, W and T are the Energy, power, amount of work and time interval respectively. 

In order to model the power consumed in the processor, we choose to approach the problem from 

two angles. First, model the power consumed by the cores and then separately provide a model 

of the power consumed by the interconnection network. A combination of the two will provide 

us with a model for the power consumed in the processor at a given point in time.  

We estimate the power consumed by the entire many-core processor to be the sum of the 

dynamic power produced due to switching activity in the cores and also along the 

interconnection network when it is toggled, the short circuit current power which occurs during 

gate signal transitions, and the power that results from leakage current. Therefore 

Power = Pdyn + Pshort + PLeakage 

We can neglect the short circuit power because it is usually insignificant when compared to the 

rest.  

Therefore, 

Power ~  Pdyn +  PLeakage 

Core Power Consumption 

Pdyn ~ bCEff V
2
f 

Where b is an activity factor which relates to the rate of 0/1 transitions that occur within core, 

CEff is the effective cumulative capacitance, V is the base supply voltage and f is the clock 

frequency.  

PLeakage = VILeakage 
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Leakage power is also known as idle power or static power. It takes place when the processor is 

both in its idle and active states.  It’s as a result of the constant leakage of current from the 

transistors that make up the circuit even when the transistors are not switching.   

Therefore,  

Power ~ bCEff V
2
f + VILeakage 

INTERCONNECTION NETWORK 

J. Hu et al. [9] proposed a model for evaluating the power consumption of the interconnection 

network based on the concept of the bit energy metric (Ebit) which is defined as the average 

energy consumed when one bit of data is transported through the interconnection network, from 

one point A to another point B. 

E
AB

bit  = nhops x ESbit + (nhops - 1) x ELbit 

Where ESbit and ELbit represent the energy consumed by the switch and the links between the 

cores.  

This model was further developed by Wolkotte et al. , through their work, in determining the 

exact amount of energy consumed when a bit goes through a router and wires. This is given by, 

Eps = 0.98 x Nhops  + (0.39 + 0.12 x wire_length) x (Nhops - 1)  

For packet switched networks and 

Ecs = 0.37 x Nhops  + (0.39 + 0.12 x wire_length) x (Nhops - 1)  

For circuit switched networks. 

Where Nhops and wire_length correspond to the number of rounting turns, and the average wire 

length between the routers. 

ENERGY FUNCTIONS 

With this in mind we can now start the process of computing the energy cost of events in the 

many-core. 

The resources of an abstract cored architecture can be described using three tuples, M, F and E. 

while M is the set of machine parameters that describe the resources of the machine, F is the set 

of abstract performance functions that can be derived from the machine parameters and E is the 

set of abstract energy functions describing the energy consumed by atomic operations of the 

machine as a function of M. Therefore, a many-core processor is modeled by giving values to the 

parameters of M and by defining the functions F(M) and E (M). 

The complete set of E are described as follows: 

E(M) = <ep,es,er,ec,egwegr>  

 ep is a function that evaluates the energy consumed when a sequence of instructions is 

computed at a core. 

 es is a function that evaluates the energy consumed by the core when it prepares to send a 

stream of data. 
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 er  is a function that evaluates the energy consumed by a core as it receives a stream of 

data. 

 ec is a function that evaluates the energy consumed due to network propagation delays. 

 egw is a function that evaluates the energy cost of writing a data stream to the global 

memory. 

 egr is a function that evaluates the energy cost of reading a data stream from the global 

memory. 

The value for each of the energy functions can be derived from the machine parameters as 

follows: 

Compute: The energy required to process the computation of a list of instructions is given as: 

ep(rp,p,sf,b, CEff,V,f) =  [b x CEff (sfV
2
f) + VILeakage] x  (rp/p) 

Where sf is the speed scaling factor, V represents the operating voltage, f represents the core 

operating frequency, p ɛ M represents the core processing power, and b represents the activity 

factor which is always 1 when the system is active and 0 when it is not switching. ILeakage ɛ M is a 

measure of the average leakage current per core. 

Send: The energy required for a core to issue a network send operation is expressed as 

es = [bCEff (sfV
2
f) + VILeakage] x ts 

Receive: The energy required for a core to issue a network receive operation is expressed as: 

er = [bCEff (sfV
2
f) + VILeakage] x tr 

Network Propagation Energy: This is expressed as 

ec =  0.98 x d(xs,ys,xd,yd) + [( 0.39 + 0.12 x wl ) x [d(xs,ys,xd,yd) – 1]] 

where wl is the average wire length between cores 

INTERMEDIATE REPRESENTATION (IR) 

The IR is a graph representing an SDF application graph, after it has been partitioned and 

mapped to a specific many-core target. We can use the IR as input to a code generator, in order 

to configure each core as well as the interconnection network and plan global memory usage. It 

is also ideal for studying optimizations that can be applied to the stream graph in later stages of 

the tool. We can then use the IR as input to an abstract interpreter for evaluating the dynamic 

behavior of the application when executed on the machine. 

The IR graph GM
A
(V, C) is a description of the application A that has been mapped to the 

abstract machine, M (See [2] for detailed description). V is the set of Vertices and C represents 

the set of communication channel. During scheduling, the each SDF sub-graph is assigned a core 

in M. After constructing the IR, each v ɛ V and each e ɛ E is assigned costs in terms time and 

also in terms of energy consumed. The costs are calculated from the parameters of M and the 

functions of F and E. 

An abstract interpreter, implemented on the Ptolemy II modeling framework, is used to draw 

meaningful conclusions from the IR.  
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CONCLUSION 

In the last four years, emerging parallel processors have come within the performance reach of 

ASICs. Effort should now be concentrated on developing adequate abstractions from the 

hardware that will improve on software design productivity. This is needed in order to take full 

advantage of the performance and energy reduction that such systems can achieve. Useful 

abstractions can only come with a better programmer environment through the provision of 

domain specific languages, tools and simulation environments. This will reduce the time it takes 

to design new products and improve on quality by taking into account certain non – functional 

properties of a system.  

This work has implemented models for stream application development on a class of many - core 

processors; Two dimensional processor arrays. Three sets of models have been developed; an 

application model, a many – core machine model and an energy model. An Intermediate 

representation has been used to concretize the actions of these models. An abstract interpreter 

has been designed to run on top of the Ptolemy II environment. It should be able to provide a 

developer with the ability to analyze successive mappings on a two – dimensional processor 

array, ranking them according to specified end – to – end latency and energy constraints. 
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