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ABSTRACT 

Experiments were carried out in a batch process for the removal of chlorophenol from 

fluted pumpkin stem waste and a commercial activated carbon. The results of equilibrium 

studies showed that equilibrium was reached within one hour of exposure time. Five 

kinetic models were applied to fit the experimental data namely pseudo first order, 

pseudo second – order, Elovich, intra-particle and liquid –film diffusion models. The 

interpretation of the released results have shown that, pseudo second order model is the 

most suitable dynamic theory describing the adsorption of chlorophenol onto both 

activated carbons predicting therefore a chemisorptions process. Chlorophenol 

thermodynamic data on FPAC and CAC indicates the feasibility and spontaneous nature 

of the process with ∆G
o
, ∆H

o,
, ∆S

o
 being negative. Fluted pumpkin stem an abundant 

waste in Nigeria, if used for the wastewater treatment process would serve as an 

economically viable option to the increasing toxic threat to the environment. 
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INTRODUCTION 

2-chlorophenol is a derivative of phenol. It is used as a disinfectant and pesticide. 2-chlorphenol 

is a liquid at room temperature, but all other chlorophenols are solids. 2-chlorophenol is used as 

bactericides, fungicides and preservatives. The water solubility of chlorophenols is low, in the 

presence of chlorine in drinking water, phenols form chlorophenol, which has a medicinal taste 

that is quite pronounced, and objectionable (Mahvi et al ., 2004; Duarte-Davidson et al., 2004: 

Denzeli et al., 2005). Chlorine substitution on phenols does not only increase water taste and 

odour, but also its toxicity effects (Mostafa et al., 1989; Rengaraj et al., 2002 and Srivastava et 

al., 2006). 

Residues of chlorophenol have been found worldwide in soil, water, air sample,  food products, 

human, animal tissues and body fluids. Due to their slow degradation, chlorophenol represent a 

major threat to ecosystems (Denzeli et al., 2004; Sofia et al., 2005 and Zumriye and Yener 

2001). 

Chronic toxic effects due to phenolic compounds reported in humans include vomiting, difficulty 

in swallowing, anorexia, liver and kidney damage, headache, fainting and other mental 

disturbance. Among the different organic pollutions of aquatic ecosystems, phenols, especially 

the chlorinated ones, are toxic to animals and human even at low concentration (Asheh et al., 
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2003). The aim of this present work is to investigate the sorption potential of a powdered 

commercial activated and a carbon derived from fluted pumpkin stem waste for the removal of 

chlorophenol from aqueous medium. The objective of this study is to carry out an investigation 

on the kinetics of chlorophenol sorption onto fluted pumpkin activated carbon (FPAC ) and a 

powdered commercial activated carbon (CAC). 

MATERIALS AND METHODS 

The fluted pumpkin stem waste (Telfairia occidentalis HOOK.F) used for this study was 

obtained from Iwofe market Rumuolumeni, Port-Harcourt. The stems collected were washed 

thoroughly with water, cut into smaller bits rinsed with distilled water, air dried and later oven 

dried at 105
o
C for 10h. The oven dried fluted pumpkin was carbonized to obtain the carbonized 

biomass. The carbonization and activation method is as stated in Ekpete et al., 2010. The 

commercial activated carbon (Sifico England) was bought from a scientific store in Port-

Harcourt Nigeria. 

Preparation of solutions 

The test solutions were prepared by diluting a stock solution of chlorophenol to the desired 

concentrations. A stock solution of chlorophenol was obtained by dissolving 1.0g of 

chlorophenol (obtained from Merck, India), in distilled water and diluted to 1000ml. Before 

mixing the adsorbents, the pH of each solution was adjusted to the required value with dilute  

0.1M H2SO4 and NaOH solutions. Several dilutions of stock solution were made to obtain 

specific concentrations required for the adsorption study. 

Determination of contact time at 30°C 

0.2g each of FPAC and CAC of 106µm mesh particle size were weighed and put in twenty two 

(250ml) conical flasks. 50ml of 100mgL
-1

 concentration of chlorophenol solutions prepared in 

de-ionized water from the stock solution was added to the biomass. The pH values of these 

suspensions were adjusted to 6.0. The flasks were labelled for time interval of 20, 30, 40, 50, 60, 

70, 80, 90, 100, 110, 120 minutes. The flasks were tightly covered with cellophane and shaken at 

150 rpm for the appropriate time intervals on an electric shaker. The suspensions was filtered 

through Whatman No 40 filter paper and centrifuged for 5 minutes. The supernatants were 

analyzed using UV-Visible spectrophotometer. Determinations were run in duplicate. 

Effect of temperature.   

50ml of chlorophenol solutions with an initial concentration of 100mgL
-1

 was placed in fourteen 

(250ml) conical flasks. 0.2g each of activated carbon was added to these solutions. The conical 

flasks were labelled at temperatures of 30, 40, 50, 60, 70, 80 and 90 
0
C respectively. The flasks 

were agitated at 150rpm and heated on a thermostat water bath to the appropriate temperatures 

for 1h. The suspensions were filtered using Whatman No 40 filter paper and centrifuged for 5 

minutes. The supernatants were analysed using UV-Visible spectrophotometer. Determinations 

were run in duplicate. 

DATA ANALYSIS  

The amount of adsorption at equilibrium, qe (mg/g) and the percent adsorption (%) was 

computed as follows: 
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Where Co and Ce are the initial and equilibrium concentrations of chlorophenol (mg/l), 

respectively. V is the volume of the aqueous solution (L) and M is the mass of the activated 

carbon used in the adsorption (g). 

 Sorption kinetic studies 

The rate at which sorption takes place is of utmost importance when designing batch sorption 

systems. Consequently, it was important to establish the time dependence of such systems under 

various process conditions in an attempt to understand the sorption process, various kinetic rate 

expression models have been applied to the experimental data in this study. 

The time dependent experimental data in this study was analysed using five kinetic models, 

namely pseudo first order, pseudo second – order, Elovich, intra-particle and liquid –film 

diffusion models. 

Pseudo –first order 

The linearized form of the pseudo –first order equation is generally expressed as follows: 

 Log (qe -- qt) = log qe - 
��

�.� �
t………………………………………….(5) 

Where qe is the amount of chlorophenol adsorbed at equilibrium (mg/g), qt is the amount of 

chlorophenol adsorbed at time t (mg/g), k1 is the first order rate constant (min
-1

) and t is time in 

(min). The straight line plot of log (qe-qt) against time t, should give a linear relationship from 

which the pseudo –first order rate constant (k1) and equilibrium sorption capacity (qe), can be 

calculated from the slope and intercept respectively. 

Pseudo second order 

The linearized form of the kinetic rate expression for a pseudo second-order model as expressed 

by Ho et al., (1995) was applied to the experimental data using (equation 6). 

 
!

"#
=

$
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+

$ 
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 t............................................................(6) 

Where qt is the amount of chlorophenol molecules on the activated carbon surface (mg/g) at time 

t, qe is the amount (mg/g) of chlorophenol sorbed at equilibrium, the initial sorption capacity 

(mg/min), ho, is obtained as shown in equation (6). 

   ho = k2 qe
2
.............................................(7) 

Where k2 is the Pseudo-second order rate constant (g/mg/min).The parameters ho and k2 are 

determined experimentally from the slope and intercept of a plot of    
!

"#
 against t.  

In this case, t/qt versus time was taken to obtain straight lines.  From the slopes and intercepts of 

these plots, the pseudo-second order rate constants K2 (g/mg/min), the equilibrium sorption 

capacity qe (mg/g) and the initial sorption capacity, ho (mg/min) were computed. 
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Elovich model 

The linearized form of the Elovich equation is mainly applicable for chemisorptions kinetics. 

The equation is often valid for systems in which the adsorbing surface is heterogeneous Ho and 

McKay (1999).  

The Elovich model is generally expressed as 

  
)*+

)+
 =αe-β*+ . 

Integrating the equation for the boundary conditions gives 

q/ = 
$ 

β
ln (αβ) + 

$

β
 lnt....................................................(8) 

A plot of �! versus ln t  should give a linear trace with a slope of (1/β)  and an intercept of  1/β 

ln(αβ). Where α is the initial adsorption rate (mg/gmin) and β is related to the extent of surface 

coverage and the activation energy for chemisorption (g/mg) and are calculated from the slope 

and intercept respectively. 

Intraparticle diffusion 

To investigate if intra-particle diffusion was the sorption rate limiting step, intra-particle 

diffusion model of Srivastava et al., (2006) was employed. 

According to this expression of equation (9) given as:  

qt = kid t
0.5

 + C.........................................(9) 

Where, kid is the intraparticle diffusion rate constant (mg/g/min
1/2

) and C (mg/g) is a constant that 

gives idea about the thickness of the boundary layer, i.e. the larger the value of C the greater the 

boundary layer effect (Kannam and Sundaram, 2001). If Srivastava plot of qt versus t
1/2

 gives a 

straight line, then the sorption process was controlled by intra-particle diffusion only and the 

slope gives the rate constant Kid.  However, if the data exhibit multi-linear plots then two or more 

steps influenced the sorption process. 

Liquid film diffusion 

The liquid film diffusion model was also employed to investigate, if the transport of the sorbate 

molecules from the liquid phase up to the solid phase boundary plays a major role in the 

adsorption as shown in equation 10 

         ln (1-F) = -kidt.................................................(10) 

Where F is the fractional attainment of equilibrium  0 =
"(

"#
 ,    Kid is the adsorption rate constant. 

A linear plot of –ln (1-F) versus t with zero intercept would suggest that the kinetics of the 

sorption process is controlled by diffusion through the liquid surrounding the solid sorbent. 

Thermodynamic analysis of experimental data  

Experimental data derived from the effect of temperature on the sorption process was analysed 

using different equations which made it possible to determine some thermodynamic parameters 

such as Gibb’s free energy change (∆G
o
), enthalpy change (∆H

o
) and entropy change (∆S

o
). The 

adsorption equilibrium constant Ko was estimated from the expression 
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The thermodynamic parameters were determined according to equations (12 and 13) as given 

below 

∆3� = 456�7� … … … … … … … … … … … … �12	 

                                        6�7� =
∆S&

9
−
∆H&

9;
… … … … … … … . . . �13	 

The values of ∆H
o
 and ∆S

o
 are calculated from the slope and intercept of the linear plot of ln Ko 

against reciprocal of temperature (1/T). 

RESULTS AND DISCUSSION 

The effect of contact time on sorption of chlorophenol on to FPAC and CAC was studied over a 

shaking time of 20 to 120 min, using 0.2g of adsorbents at pH 6.0 

 

 

 

Fig 1: Effect of carbon contact time on the percentage removal of chlorophenol from FPAC and CAC 

Figure 1 shows that the contact time needed for chlorophenol solutions of 100mg/l to reach 

equilibrium is 60 minutes. Almost, no remarkable improvement was observed after longer 

contact time. After this equilibrium period, the amount of solute adsorbed did not change 

significantly with time, indicating that 60min is sufficient to attain equilibrium for the maximum 

removal of chlorophenol from aqueous solutions by FPAC and CAC, respectively.  So the 

optimum contact time was selected as 60 minutes for further experiments.  
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Fig 3: Pseudo-first order sorption kinetics of chlorophenol on FPAC and CAC. 

                    

 

 

                     

Fig 4: Pseudo-second order kinetics of chlorophenol on FPAC and CAC 
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Fig 5: Intraparticle diffusion kinetics of chlorophenol on FPAC and CAC. 

 

 

 

 

Fig 6: Elovich diffusion kinetics of chlorophenol on FPAC and CAC 
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                  Fig 7: Liquid film diffusion kinetics of chlorophenol on FPAC and CAC 

  

 

 

 

 

Fig 8: Linear plots of lnKo versus 1/T for the sorption of chlorophenol onto FPAC and CAC 
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Table 1. Pseudo first order, Pseudo second order, Intra –particle rate diffusion, Elovich diffusion 

model, Liquid film diffusion and thermodynamic parameters for the sorption of phenol on to 

FPAC and CAC carbon samples.  

Adsorbent Sorption capacity at 

equilibrium qe (mg/g) 

Pseudo first order rate 

constant. K1 (g/(mg/min) 

Regression 

coefficient 

(R
2
) 

CPFPAC 36.30 7.3 x10
-2

 0.970 

CPCAC 54.45 7.5 x10
-2

 0.933 

Pseudo second order rate parameters  

Adsorbent Sorption capacity 

at equilibrium 

qe (mg/g) 

Initial 

sorption 

rate, ho 

(mg/gmin) 

Pseudo 

second order 

rate constant. 

K2 

(mg/g/min
1
/
2
) 

Regression 

coefficient 

(R
2
) 

CPCAC 34.48 1.94 x10
-2

 9.75x 10
-4

 0.999 

CPFPAC 32.25 2.45 x10
-2

 2.40 x 10
-3

 0.997 

Intra –particle rate diffusion parameters 

Adsorbent Kid1 intercept R1
2
 Kid2 intercept R2

2
 

CPFPAC 3.536 0.000 0.968 0.000 24.970 1.000 

CPCAC 3.801 -2.546 0.966 0.000 24.750 1.000 

Elovich model diffusion parameters 

Adsorbent α(mg/g/min) β(g/mg) R
2
 

CPFPAC 2.79 0.112 0.970 

CPCAC 2.32 0.113 0.960 

Liquid film diffusion parameters 

Adsorbent Kid Intercept R
2
 

CPFPAC 0.054 -0.085 0.988 

CPCAC 0.056 -0.318 0.982 

Thermodynamic parameters 

Adsorbent ∆H 

(Kjmol
-1

) 

∆S 

(Kjmol
-1

) 

∆G
O

 

KJ/mol 

 

CPFPAC -7.035 -0.018 -2.131 

CPCAC -3.995 -0.027 -1.209 

The time dependent experimental data in this study were analysed using the pseudo first order 

rate equation of Lagergren. In order to determine the rate constants, the straight line plot of log 

(qe-qt) against time was taken as presented in Figure 3 and Table 1. 

Table 1 shows that the equilibrium sorption capacity trend followed the order CPCAC (54.45) > 

CPFPAC (36.30). Further observation showed that the pseudo-first order rate constant, K1 was 

higher for CPCAC (0.075) than for CPFPAC (0.072).  The regression coefficient (R
2
) values 
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ranges from 0.933 to 0.970, which indicated that the pseudo first order model was slightly 

suitable for the adsorption of chlorophenol on FPAC and CAC respectively. 

 The initial sorption rate (ho) was higher for the sorption process of CPFPAC (0.0245) than 

CPCAC (0.0194) which should follow that FPAC adsorbs better than CAC based on the initial 

sorption rate but the equilibrium sorption capacity for the pseudo second order kinetics for CAC 

(34.48) is greater than for FPAC (32.25) as shown in Table 1. The pseudo second order rate 

constant increases  in the order CPFPAC (2.40 x 10
-3

) > CPCAC (9.75x 10
-4

).The table further 

indicates that the correlation coefficients for chlorophenol are high ranging from 0.997 to 0.999 

showing that the kinetic sorption experimental data followed the pseudo order isotherm model. 

The plot of qt against t
1/2

 shows that the data points can be related by two straight lines. 
 
The first, 

sharper portion depicts macropore diffusion and the second portion describes the gradual 

adsorption stage, where, micropore diffusion is rate limiting (Bhattacharyya and Sharma 2004: 

Ozacar, 2006). Extrapolation of the linear portions of the plots back to the y-axis gives the 

intercepts, which provide a measure of the boundary layer thickness. The  lines for CPFPAC 

which passed through the origin (Fig 4) indicates no degree of boundary layer and these further 

shows that the intraparticle diffusion is not the only rate controlling step (Crini et al., 2007).  

The slope of the (Srivastava et al., 2006) plots are defined as a rate parameter, characteristic of 

the rate of adsorption in the region where intraparticle diffusion is rate controlling. The values of 

rate parameters (Kid1 and Kid2) are given in Table 1. A comparism of the Kid values for both the 

macropore and micropore diffusion (Table 1) shows that the rate limiting step is the micropore 

diffusion stage. This is because the Kid2 values are lower than the Kid1 values which are a 

pointer to the fact that the rate of micropore diffusion is the slower step and the rate determining 

step. The boundary layer effect, as obtained from the intercept of the plot as shown in Table 1 

was also of greater effect at the micropore diffusion stage than at the macropore diffusion stage. 

The Elovich equation which has been shown to be useful in describing chemisorptions on highly 

heterogeneous adsorbents, gives a good account of the adsorption of chlorophenol with R
2 

values 

ranging from 0.960 to 0.970. Table 1 shows that the initial sorption rate, (α) followed the order 

CPFPAC > CPCAC, indicating that adsorption was better on CPFPAC than CPCAC.  β which is  

related to the extent of surface coverage and the activation energy for chemisorption followed the 

order CPFPAC (0.112mg/g) < CPCAC (0.113mg/g). 

The significance of liquid film diffusion in rate determination of the sorption process indicated 

that the intercept values were less than zero and close to the origin as shown in Table 1 The 

liquid film diffusion constant Kid was highest for chlorophenol on CAC (0.056) and lower for 

chlorophenol on FPAC (0.054). The high regression values > 0.980 on both carbons shows the 

relevance of film diffusion as a rate determining factor in the sorption process.  

The negative values of  ∆H
o
, indicates the exothermic nature of the sorption process while the 

negative values of ∆S
o
 indicate strong bond formation between the adsorbent and adsorbate 

molecules. The negative values of ∆G
o
 confirm the feasibility of the process and the spontaneous 

nature of the adsorption (McKay and Poots 1980: Ho et al., 2005), thus, confirming a chemical 

sorption, as was earlier suggested in pseudo-second order studies of this work. 
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Table 2: Comparison of regression values of pseudo first order- pseudo second order, 

intraparticle, and Elovich and Liquid diffusion kinetic models. 

From Table 2, it was observed that the values of the correlation coefficients R1
2 

,R2
2
, R3

2
, R4

2 
and 

R5
2
 were extremely high (>0.930). This shows that the results fit these five models very well. 

However, the pseudo –second order correlation coefficient values were found to be slightly 

higher than those of Elovich, Liquid-film, pseudo-first order and intraparticle values, indicating 

that the sorption follows better the pseudo-second order model. 

CONCLUSIONS 

1. Fluted pumpkin activated carbon compared favourably to commercial activated    carbon 

for chlorophenol removal in aqueous solution. 

2. The thermodynamic adsorption of chlorophenol ∆3� ,  ∆>�,  ∆?� were all negative. 

3. Pseudo second order favoured the kinetic adsorption process. 
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